- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dierick, Diego (2)
-
Allen, Michael_F (1)
-
Aronson, Emma_L (1)
-
Artavia‐León, Allan (1)
-
Botthoff, Jon_K (1)
-
García-Robledo, Carlos (1)
-
Manser, Konstantine (1)
-
Pinto‐Tomás, Andrian_A (1)
-
Shulman, Hannah_B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers. Mites colonize new flowers by hitching rides on hummingbird beaks. Flower mites emerge from hummingbird nostrils and disembark when the beak touches a flower. We tested whether flower mites are attracted to unmodulated electrostatic, or to modulated electric fields with amplitudes and frequencies in the range of those previously reported for hummingbirds. In a laboratory setup, mites were only attracted to modulated electric fields. In a choice experiment between positive or negative polarities, mites almost instantaneously chose positive charges, but only when the field was modulated. Mites display questing behavior, moving their front legs toward an electrostatic source. In experiments where we removed one or both front leg tarsi, we show that modulated fields are detected by sensory structures present in the front legs. We also show that flower mites use electrostatic attraction to bridge the gap to the beaks of hummingbirds, for a few milliseconds becoming one of the fastest terrestrial organisms. Our results confirm that hummingbird flower mites evolved an additional sensory modality — electroreception — to quickly detect hummingbirds and use electrostatics to facilitate transportation onto their hosts.more » « lessFree, publicly-accessible full text available February 4, 2026
-
Shulman, Hannah_B; Aronson, Emma_L; Dierick, Diego; Pinto‐Tomás, Andrian_A; Botthoff, Jon_K; Artavia‐León, Allan; Allen, Michael_F (, Environmental Microbiology Reports)Abstract We conducted a research campaign in a neotropical rainforest in Costa Rica throughout the drought phase of an El‐Nino Southern Oscillation event to determine microbial community dynamics and soil C fluxes. Our study included nests of the leafcutter antAtta cephalotes, as soil disturbances made by these ecosystem engineers may influence microbial drought response. Drought decreased the diversity of microbes and the abundance of core microbiome taxa, including Verrucomicrobial bacteria and Sordariomycete fungi. Despite initial responses of decreasing diversity and altered composition, 6 months post‐drought the microbiomes were similar to pre‐drought conditions, demonstrating the resilience of soil microbial communities to drought events.A. cephalotesnests altered fungal composition in the surrounding soil, and reduced both fungal mortality and growth of Acidobacteria post‐drought. Drought increased CH4consumption in soils due to lower soil moisture, andA. cephalotesnests decrease the variability of CH4emissions in some soil types. CH4emissions were tracked by the abundance of methanotrophic bacteria and fungal composition. These results characterize the microbiome of tropical soils across both time and space during drought and provide evidence for the importance of leafcutter ant nests in shaping soil microbiomes and enhancing microbial resilience during climatic perturbations.more » « less
An official website of the United States government
